Resumen:
Population pressure, urbanization, and industrial developments, among other factors, have resulted in severe degradation of environmental resources such as wetlands. Thus, a groundwater model (MODFLOW) was integrated with a particle tracking MODPATH model to simulate the hydrodynamic flow head field and to analyze the vulnerability of the Salburua ecosystem and propose control measures to protect the riparian area. The simulations show that pathways of particle tracking originating at potential contaminant sources will tend to migrate downwards towards the sensitive ecosystem, which suggests that the quality of the hydrological ecosystem is likely to deteriorate in the future. Variation in exit points of particles indicates that the time-related capture areas are affected by changes of the hydraulic gradients. Two control measures of potential sources of pollutants in the vicinity of the Salbarua ecosystem were analyzed. The study results suggest that the travel time-related capture zone with a funnel-and-gate system is much smaller than without the control alternative, which indicates that the gate configuration has an effect on capture zone size and shape and on the residence time with a better attenuation performance. It is also shown that a leakage-proof barrier is less effective for point-source containment, assuming that hydraulic control performance and cost-efficiency are the criteria for pollution control effectiveness. Instead, a program of monitoring wells would effectively characterize water quality in the aquifer and provide a decision support system. This approach may be used in helping water managers to develop more physically based and quantitative protection strategies