
A Linear Time Algorithm for Counting
#2SAT on Series-Parallel Formulas

Marco A. López-Medina1, J. Raymundo Marcial-Romero1(B),
Guillermo De Ita-Luna2, and José A. Hernández1

1 Facultad de Ingenieŕıa, UAEMex, Toluca, Mexico
mlopezm158@alumno.uaemex.mx, jrmarcialr@uaemex.mx

2 Facultad de Ciencias de la Computación, BUAP, Puebla, Mexico
deita@cs.buap.mx

Abstract. An O(m + n) time algorithm is presented for counting the
number of models of a two Conjunctive Normal Form Boolean Formula
whose constrained graph is represented by a Series-Parallel graph, where
n is the number of variables and m is the number of clauses. To the
best of our knowledge, no linear time algorithm has been developed for
counting in this kind of formulas.

Keywords: #SAT · #2SAT · Complexity theory · Graph theory

1 Introduction

The decision problem SAT (F), where F is a Boolean formula, consists in deter-
mining whether F has a model, that is, an assignment to the variables of F such
that when evaluated with respect to classical Boolean logic it returns true as a
result. If F is in two Conjunctive Normal Form (2-CNF) then SAT (F) can be
solved in polynomial time, however if F is in k-CNF, k > 2, then SAT (F) is an
NP-Complete problem. The counting version consists on determining the number
of models of F denoted as #SAT (F). #SAT (F) belongs to class #P-Complete
even when F is in 2-CNF, the latter denoted as #2SAT [1].

Although the #2SAT problem is #P-Complete, there are instances that can
be solved in polynomial time [2,3]. For example, if the graph representation of
the formula is acyclic, then the number of models can be computed in lineal time.
Currently, the algorithms that are used to solve the problem for any formula F in
2-CNF, decompose F into sub-formulas until there are base cases in which it can
be counted efficiently. The algorithm with the best time complexity so far was
developed by Wahlström [4] which is given by O(1.2377n) where n represents the
number of variables in the formula. The Wahlström algorithm uses the number
of times a variable appears in the formula (be it the variable or its negation)
as the criterion for choosing it. The two criteria for stopping the algorithm are
when F = ∅ or when ∅ ∈ F .

On series-parallel graphs the closest work is related to recognizing when a
graph is series-parallel and some decision problem as we briefly describe.
c© Springer Nature Switzerland AG 2020
L. Mart́ınez-Villaseñor et al. (Eds.): MICAI 2020, LNAI 12468, pp. 437–447, 2020.
https://doi.org/10.1007/978-3-030-60884-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60884-2_33&domain=pdf
https://doi.org/10.1007/978-3-030-60884-2_33

438 M. A. López-Medina et al.

Schoenmakers [5] develops a linear-time algorithm to recognize series-parallel
graphs, computing a source-sink representation of this graph from a breath-
first spanning tree. The complexity of constructing this representation is
O(n

√
n). Eppstein [6] gives an algorithm to recognize directed and undirected

series-parallel graphs, based on a characterization of their ear decompositions.
Takamizawa [7] shows that if a graph is restricted to the series-parallel class,
then there exists linear-time algorithms for decision problems and combina-
torial problems as: minimum vertex cover, maximum independent vertex set,
maximum (induced) line-subgraph, maximum edge (vertex) deletion respect to
property “without cycles (or paths) of specified length n or any length ≤ n”,
maximum outerplanar (induced) subgraph, minimum feedback vertex set, maxi-
mum ladder (induced) subgraph, minimum path cover, maximum matching and
maximum disjoint triangle.

In this paper we present an algorithm to count model on a special class of
formulas in linear time, the so called, series-parallel formulas [8,9] which to the
best of our knowledge has not been tackle previously to count models [10].

2 Preliminaries

2.1 Conjunctive Normal Form

Let X = {x1, ..., xn} be a set of n Boolean variables (that is, they can only
take two possible values 1 or 0). A literal is a variable xi, denoted in this paper
as x1

i or the denied variable ¬xi denoted in this paper as x0
i . A clause is a

disjunction of different literals. A Boolean formula F in conjunctive normal form
is a conjunction of clauses.

Let v(Y) be the set of variables involved in the object Y , where Y can be a
literal, a clause or a Boolean formula. For example, for the clause c = {x1

1 ∨x0
2},

v(c) = {x1, x2}.
An assignment s in F is a Boolean function s : v(F) → {0, 1}. s is defined

as:
s(x0) = 1 if s(x1) = 0, otherwise , s(x0) = 0.

The assignment can be extended to conjunctions and disjuntions as follows:

– s(x ∧ y) = 1 if s(x) = s(y) = 1, otherwise, s(x ∧ y) = 0
– s(x ∨ y) = 0 if s(x) = s(y) = 0, otherwise, s(x ∨ y) = 1

Let F be a Boolean formula in CNF, it is said that s satisfies F , if for each
clause c in F , it holds s(c) = 1. On the other hand, it is said that F is contradicted
by s (s 	|= F), if there is at least one clause c of F such that s(c = 0). Thus a
model of F is an assignment that satisfies F .

Given a formula F in CNF, SAT is to determine whether F has a model,
while #SAT is to count the number of models that F . On the other hand,
#2SAT denotes #SAT for formulas in 2-CNF.

A Linear Time Algorithm for Counting #2SAT on Series-Parallel Formulas 439

2.2 The Restricted Graph of a 2-CNF

There are some graphical representations of a Conjunctive Normal Form, in this
case the signed primary graph (restricted graph) [11] will be used.

Let F be a 2-CNF, its restricted graph is denoted by GF = (V (F), E(F))
where the vertices of the graph are the variables V (F) = v(F) and E(F) =
{{xε

i , x
γ
j } | {xε

i ∨ xγ
j } ∈ F} , that is, for each clause {xε

i ∨ xγ
j } ∈ F there is an

edge {xε
i , x

γ
j } ∈ E(F). For x ∈ V (F), δ(x) denotes its degree, that is the number

of incident edges in x. Each edge c = {xε
i , x

γ
j } ∈ E(F) has associated a pair

(ε, γ), which represent whether the variables xi or xj appear negated or not. For
example, the clause (x0

1 ∨ x1
2) has associated the pair (0, 1) meaning that in the

clause, xi appears negated and x2 not.

2.3 Methods Already Reported to Count in #2SAT

The basic idea considered in related papers to count models on a restricted
graph G consists on computing a tuple (αi, βi) over each vertex xεi

i where αi

represents the number of times that xεi
i appears positive in the models of G and

βi the number of times xεi
i appears negative in the models of G. For example

a clause with a simple vertex {xεi
i } has associated the tuple (1, 1) Given and

edge(clause) e = {xεi
i , xγi

j } if the counting begins at xεi
i the tuples (1, 1), (2, 1)

are associated to xεi
i and xγi

j respectively however if the counting begins at
xγi

j the tuples are associated inversely. The models are the sum of the last two
elements of the tuple.

There are reported methods to count models in some graphical representa-
tions of a 2-CNF formula F [12], here we stated the methods needed in the
paper:

– If the graph represents a path e.g. a formula of the form
Pn = {{xε1

1 , xγ1
2 }, {xε2

2 , xγ2
3 }, · · · {xεn−1

n−1 , x
γn+1
n }} of n vertices, the number

of models is given by the sum of the elements of the pair (αn, βn). where
(α1, β1) = (1, 1) and the tuple for the other vertices is computed according
to the next recurrence.

(αi, βi) =

⎧
⎪⎪⎨

⎪⎪⎩

(αi−1 + βi−1, αi−1) if (εi−1, γi−1) = (1, 1)
(αi−1, αi−1 + βi−1) if (εi−1, γi−1) = (1, 0)
(αi−1 + βi−1, βi−1) if (εi−1, γi−1) = (0, 1)
(βi−1, αi−1 + βi−1) if (εi−1, γi−1) = (0, 0)

(1)

– Let {xε1
i , xγ1

j } and {xε2
i , xγ2

j } be two parallel clauses in a formula F , the number of
models for this clauses is given by:

(αj , βj) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(αi, αi) if (ε1, γ1) = (1, 1) and (ε2, γ2) = (1, 0)
(αi + βi, 0) if (ε1, γ1) = (1, 1) and (ε2, γ2) = (0, 1)

(βi, αi) if (ε1, γ1) = (1, 1) and (ε2, γ2) = (0, 0)
(αi, βi) if (ε1, γ1) = (1, 0) and (ε2, γ2) = (0, 1)

(0, αi + βi) if (ε1, γ1) = (1, 0) and (ε2, γ2) = (0, 0)
(βi, βi) if (ε1, γ1) = (0, 1) and (ε2, γ2) = (0, 0)

(2)

440 M. A. López-Medina et al.

– Let {xε1
i , xγ1

j }, {xε2
i , xγ2

j } and {xε3
i , xγ3

j } be three parallel clauses in a formula F ,
the number of models for this clauses is given by:

(αj , βj) =

⎧
⎪⎪⎨

⎪⎪⎩

(0, αi) if (ε1, γ1) = (1, 1) and (ε2, γ2) = (1, 0) and (ε3, γ3) = (0, 0)
(αi + βi, 0) if (ε1, γ1) = (1, 1) and (ε2, γ2) = (1, 0) and (ε3, γ3) = (0, 1)

(βi, αi) if (ε1, γ1) = (1, 1) and (ε2, γ2) = (0, 1) and (ε3, γ3) = (0, 0)
(αi, βi) if (ε1, γ1) = (0, 1) and (ε2, γ2) = (1, 0) and (ε3, γ3) = (0, 0)

(3)

3 Counting Separately on Series and Parallel Formulas

In this paper instead of associating a tuple to each vertex, as previously
explained, we associate a triple to each edge as described below.

3.1 Directional Element

For a clause e = {xε1
i , xγ1

j }, a triple Qe = (xi, xj , Cxixj
) is associated, where the

first two elements are the variables associated to the literals, Cxixj
is a quadruple

which represents the models for the possible assignments of the literals xi and
xj . Initially, the value of the quadruple for Cxixj

has three non-zero elements and
one zero element which represents the three models that a clause has associated,
as represented on Eq. 4.

Cxixj
=

⎧
⎪⎪⎨

⎪⎪⎩

(1, 1, 1, 0) if (ε1, γ1) = (1, 1)
(1, 0, 1, 1) if (ε1, γ1) = (1, 0)
(1, 1, 0, 1) if (ε1, γ1) = (0, 1)
(0, 1, 1, 1) if (ε1, γ1) = (0, 0)

(4)

Each Cxixj
is called a directional element. For example for a clause {x1

i , x
0
j},

Cxixj
= (1, 0, 1, 1).

3.2 Extended the Counting

Now we present counting methods on clauses of two kinds, paths, which later
on will represent series graphs and parallel clauses. Our method consists on con-
tracting edges until a single edge with two vertices is left.

Series counting

Let e1 = {xεi
i , xγi

j } and e2 = {x
εj
j , x

γj

k } be two clauses such that i 	= k 	= j
and whose triples are Qe1 = {xi, xj , Cxixj

} and Qe2 = {xj , xk, Cxjxk
}. As can

be noticed, these two clauses form a path, since they are joined by xj . We
contract e1 and e2 into a single clause, lets call it e1−2, its new triple is given by
Qe1−2 = {xi, xk, Cxixk

} where each element of Cxixk
is computed as:

π1(Cxixk
) = π1(Cxjxk

)π1(Cxixj
) + π2(Cxjxk

)π3(Cxixj
) (5)

A Linear Time Algorithm for Counting #2SAT on Series-Parallel Formulas 441

π2(Cxixk
) = π1(Cxjxk

)π2(Cxixj
) + π2(Cxjxk

)π4(Cxixj
) (6)

π3(Cxixk
) = π3(Cxjxk

)π1(Cxixj
) + π4(Cxjxk

)π3(Cxixj
) (7)

π4(Cxixk
) = π4(Cxjxk

)π2(Cxixj
) + π4(Cxjxk

)π4(Cxixj
) (8)

where πl(Cxixj
) is the projection function on l-th element of the quadruple.

Lemma 1. Let F be a formula representing a restricted path graph Pn =
{{xε1

1 , xγ1
2 }, {xε2

2 , xγ2
3 } · · · {xεn−1

n−1 , x
γn−1
n }}, if the contraction rule is applied from

{xε1
1 , xγ1

2 } to {x
εn−1
n−1 , x

γn−1
n } until a triple (x1, xn, Cx1xn

) is obtained then

#2SAT (F) = π1(Cx1xn
) + π2(Cx1xn

) + π3(Cx1xn
) + π4(Cx1xn

)

Proof. By induction comparing it with the well known result of Eq. 1. The base
case when there is a simple clause {xε

1, x
γ
2}, the number of models corresponds

with that computed with Eq. 1 as shown in Figs. 1 and 2. In both cases the sum
of their tuples is three.

xε
1

(1,1)

xγ
2

(2,1)

Fig. 1. Path P2 using Eq. 1

x1 x2

(1,1,1,0)

Fig. 2. Path P2 using serial counting

On a path P3, with edges {{xεi
1 , xγi

2 }, {x
εj
2 , x

γj

3 }} the number of models is
either 5 if (γ1 = ε2) or 4 if (γ1 	= ε2) (Fig. 3).

x1 x2 x3

(1,1,1,0) (1,1,1,0)
→ x1 x2

(2,1,1,1)

Fig. 3. Path P2 using serial counting and contraction on x1

The inductive step is a two case analysis over the values of ε and γ.

442 M. A. López-Medina et al.

Example, let F = {{x1
1, x

1
2}, {x1

2, x
0
3}, {x0

3, x
1
4}, {x0

4, x
0
5}} be a formula

whose restricted graph represents a path. The triples for each clause are:
{x1, x2, (1, 1, 1, 0)}, {x2, x3, (1, 0, 1, 1)}, {x3, x4, (1, 1, 0, 1)}, {x4, x5, (0, 1, 1, 1)}.

To make the notation more amenable we use the following representation for
the triples.

x1 x2 x3 x4 x5

(1,1,1,0) (1,0,1,1) (1,1,0,1) (0,1,1,1)

First we need to contract {x1
1, x

1
2} and {x2, x

0
3} to create a new edge from x1

to x3. Using the serial composition equations (6–9) we obtain the new quadruple.

x1 x3 x4 x5

(1,1,2,1) (1,1,0,1) (0,1,1,1)

Now contracting edges on x3 we get:

x1 x4 x5

(3,2,2,1) (0,1,1,1)

And finally contracting edges on x4 we get:

x1 x5

(2,1,5,3)

The number of models of the initial formula is obtained by adding the four
elements of the quadruple, in this case is 11.

Parallel Counting

Given a clause {xεi
i , xγi

j }, there are at most four possible parallel clauses
of it, including itself: {xεi

i , xγi

j }, {xεi
i , x1−γi

j }, {x1−εi
i , xγi

j } and the clause
{x1−εi

i , x1−γi

j }. In a formula, at most three of them can be present, otherwise
the formula does not have models. In fact, Eqs. 2 and 3 present already known
methods for counting models in those classes of parallel clauses.

In this section we extend the contraction method for parallel clauses which
again works on clauses instead of vertices. In our method since a clause is repre-
sented by a triple (xi, xj , Cxixj

), there may be a finite number of parallel clauses
of the previous form with different Cxixj

components, these clauses may come
from a serial reduction in a serial-parallel formula.

Let e1...eh be parallel clauses on two vertices with triples Qel
=

(xi, xj , Cxiyj
) : 1 ≤ l ≤ h. A merge of them can be done leaving the result

lets say in e1. The merge is accomplished with the following equations:

πk(Cxixj
) =

h∏

l=0

πk(Cxixj
) (9)

where k = 1, 2, 3, 4.

A Linear Time Algorithm for Counting #2SAT on Series-Parallel Formulas 443

Lemma 2. Let F be a formula representing a restricted graph of two or
three parallel clauses e.g. F = {{xε1

1 , xγ1
2 }, {xε2

1 , xγ2
2 }} or the formula is F =

{{xε1
1 , xγ1

2 }, {xε2
1 , xγ2

2 }, {xε3
1 , xγ3

2 }}, if the merging rule is applied until a single
triple is left (x1, x2, Cx1x2} then

#2SAT (F) = π1(Cx1x2) + π2(Cx1x2) + π3(Cx1x2) + π4(Cx1x2)

Proof. A simple case analysis is done comparing the results with the well known
results of Eqs. 2 and 3. The result for two parallel clauses is shown in Fig. 4 and
their merge in Fig. 5.

xi xj
(1,1,1,0)

(1,0,1,1)
xi xj

(1,1,1,0)

(1,1,0,1)
xi xj

(1,1,1,0)

(0,1,1,1)

xi xj
(1,0,1,1)

(1,1,0,1)
xi xj

(1,0,1,1)

(0,1,1,1)
xi xj

(1,1,0,1)

(0,1,1,1)

Fig. 4. Parallel cases of two clauses

xi xj
(1,0,1,0)

xi xj
(1,1,0,0)

xi xj
(0,1,1,0)

xi xj
(1,0,0,1)

xi xj
(0,0,1,1)

xi xj
(0,1,0,1)

Fig. 5. Applying merging rule on cases of two clauses

From Eq. 2 the pair (αi, βi) obtained on cases of two parallel clauses (xε1
i , xγ1

j)
and (xε2

i , xγ2
j) are (2, 0) if (ε1, γ1) = (1, 1) and (ε2, γ2) = (0, 1), it is (0, 2) if

(ε1, γ1) = (1, 0)and(ε2, γ2) = (0, 0), and (1, 1) on the remaining cases. Fot three
clauses the analysis is similar.

For example given parallel clauses e1 = {x1
i , x

1
j}, e2 = {x1

i , x
0
j}, with elements

Cxixj
= (1, 1, 1, 0) of e1 and Cxixj

= (1, 0, 1, 1) of e2. They can be merged
obtaining the updated element Cxixj

= (1, 0, 1, 0) as graphically show in Figs. 6
and 7.

xi xj

(1,1,1,0)

(1,0,1,1)

Fig. 6. Graphical representation of the quadruples for e1, e2

444 M. A. López-Medina et al.

xi xj
(1,0,1,0)

Fig. 7. Merging e1 and e2

4 Counting on Series-Parallel Formulas

A graph represents a Series-Parallel formula if it can be built from a single edge
and the following two operations:

1. Series construction: subdividing an edge in the graph.
2. Parallel construction: duplicating an edge in the graph.

Another characterization of a series-parallel graph is that it do not contain
a subdivision of K4 (complete graph of four vertices). The first characterization
implies that a series-parallel graph always has a vertex of degree two and further
more given a series-parallel graph we can always deconstruct it using the inverse
of the previous described operations. This section presents the algorithm used
for counting models on Series-Parallel graphs. Algorithm 1 computes the num-
ber of models of a series-parallel formula, it consists of two main steps: serial
deconstruction (contraction) and parallel deconstruction (merging).

Algorithm 1. Procedure that computes #2SAT (F) when F represents a series-
parallel graph
1: procedure #2SAT(F)
2: Compute the incident matrix of F to get the degree of each vertex
3: while |F > 1|{There are more than one clause} do
4: for each vertex xi of degree 2 do
5: Apply the series contraction rule to the two clauses xi belongs to
6: end for
7: for each pair of parallel clause do
8: Apply the parallel merging rule to those clauses
9: end for

10: end while
11: Let e = {xi, xj} be the left clause and its triple Qe = (xi, xj , Cxixj)
12: return π1(Cxixj) + π2(Cxixj) + π3(Cxixj) + π4(Cxixj).

Theorem 1. If F is a series-parallel formula then Algorithm 1 computes
#2SAT (F).

Proof. A consequence of Lemmas 1 and 2.

A Linear Time Algorithm for Counting #2SAT on Series-Parallel Formulas 445

4.1 Running Example

We now present an example in order to explain our algorithm, let

F = {{x1
1, x

1
2}, {x1

2, x
1
3}, {x0

3, x
0
10}, {x1

1, x
1
4}, {x1

4, x
0
5}, {x0

5, x
1
10},

{x1
1, x

1
6}, {x0

6, x
1
7}, {x1

7, x
0
10}, {x1

1, x
1
8}, {x0

8, x
0
9}, {x1

9, x
1
10}}

be a formula whose restricted graph represents a series-parallel graph as shown
in Fig. 8. The triples for each clause are:

x1, x2, (1, 1, 1, 0), x2, x3, (1, 1, 1, 0), x3, x10, (0, 1, 1, 1), x1, x4, (1, 1, 1, 0),
x4, x5, (1, 0, 1, 1), x5, x10, (1, 1, 0, 1), x1, x6, (1, 1, 1, 0), x6, x7, (1, 1, 0, 1),
x7, x10, (1, 0, 1, 1), x1, x8, (1, 1, 1, 0), x8, x9, (0, 1, 1, 1), x9, x10, (1, 1, 1, 0), .

We use the previous graphical representation to make the reductions appli-
cation clear:

x1

x2 x3

x4 x5

x6 x7

x8 x9

x10

(1
,1,
1,0
)

(1,1,1,0)

(0,1,1,1)

(1,1,
1,0)

(1,0,1,1)
(1,1,0,1)

(1,1,1,0)
(1,1,0,1)

(1,0,
1,1)

(1,1,1,0)

(0,1,1,1)

(1
,1,
1,0
)

Fig. 8. Representation of a series-parallel formula

First we need to contract on every vertex xi where δ(xi) = 2. Then we obtain
a new set of edges.

Then we can use the merging of parallel clauses between x1 and x10 (Fig. 10).
The number of models of the initial formula is obtained by adding the four

elements of the quadruple, in this case is 38.

5 Complexity Analysis

Although Algorithm1 has a while and inside two for instructions, in each step
either a contraction or a merging operation is applied, hence a clause is removed
in each step. So m − 1 steps are needed to reduce the graph until a single clause
is obtained. Each reduction computes a quadruple so 4(m − 1) operations are
needed. The computation of the incident matrix takes m + n steps, so in total
5m + n operations are required which represents a procedure of order O(m + n)
time complexity.

446 M. A. López-Medina et al.

x1 x10

(1,1,3,2)

(3,2,2,1)

(2,1,3,1)

(3,1,1,0)

Fig. 9. Result of contracting on xi where δ(xi) = 2

x1 x10

(18,2,18,0)

Fig. 10. Result of merging the parallel clauses of Fig. 9

6 Conclusions

In this paper we present an algorithm to compute the #2SAT (F) when F is a
formula whose restricted graph represents a series-parallel graph. We show that
our algorithm is correct and its time complexity is linear with respect to the
number of variables and clauses of the input formula.

References

1. Winkler, P., Brifhtwell, G.: Counting linear extensions. Order, 8(e), 225–242 (1991)
2. López-Medina, M.A., Marcial-Romero, J.R., De Ita Luna, G., Montes-Venegas,

H.A., Alejo, R.: A linear time algorithm for solving #2SAT on cactus formulas.
CoRR, ams/1702.08581 (2017)

3. López, M.A., Marcial-Romero, J.R., De Ita, G., Moyao, Y.: A linear time algorithm
for computing #2SAT for outerplanar 2-CNF formulas. In: Mart́ınez-Trinidad,
J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A., Sarkar, S. (eds.) MCPR 2018.
LNCS, vol. 10880, pp. 72–81. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-92198-3 8

4. Wahlström, M.: A tighter bound for counting max-weight solutions to 2SAT
instances. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp.
202–213. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79723-
4 19

5. Schoenmakers, L.A.M.: A new algorithm for the recognition of series parallel
graphs. CWI (Centre for Mathematics and Computer Science) (1995)

6. Eppstein, D.: Parallel recognition of series-parallel graphs. Inf. Comput. 98, 41–55
(1992)

7. Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combinato-
rial problems on series-parallel graphs. J. Assoc. Comput. Mach. 29(3), 623–641
(1982)

8. Gross, J.L., Yellen, J., Zhang, P.: Handbook of Graph Theory. Chapman &
Hall/CRC, New York (2013)

https://doi.org/10.1007/978-3-319-92198-3_8
https://doi.org/10.1007/978-3-319-92198-3_8
https://doi.org/10.1007/978-3-540-79723-4_19
https://doi.org/10.1007/978-3-540-79723-4_19

A Linear Time Algorithm for Counting #2SAT on Series-Parallel Formulas 447

9. Dieter, J.: Graphs, Networks and Algorithms., 4th edn. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-32278-5

10. Jakoby, A., Lískiewicz, M., Reischuk, R.: Space efficient algorithms for directed
series-parallel graphs. J. Algorithms 60(2), 85–114 (2006)

11. Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In:
Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3 15

12. Marcial-Romero, J.R., De Ita Luna, G., Hernández, J.A., Valdovinos, R.M.: A
parametric polynomial deterministic algorithm for #2SAT. In: Sidorov, G., Galicia-
Haro, S.N. (eds.) MICAI 2015. LNCS (LNAI), vol. 9413, pp. 202–213. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-27060-9 16

https://doi.org/10.1007/978-3-642-32278-5
https://doi.org/10.1007/978-3-540-24605-3_15
https://doi.org/10.1007/978-3-319-27060-9_16

	A Linear Time Algorithm for Counting #2SAT on Series-Parallel Formulas
	1 Introduction
	2 Preliminaries
	2.1 Conjunctive Normal Form
	2.2 The Restricted Graph of a 2-CNF
	2.3 Methods Already Reported to Count in #2SAT

	3 Counting Separately on Series and Parallel Formulas
	3.1 Directional Element
	3.2 Extended the Counting

	4 Counting on Series-Parallel Formulas
	4.1 Running Example

	5 Complexity Analysis
	6 Conclusions
	References

